Краевые задачи для уравнения Гельмгольца в угловой области. I
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Вивчаються крайові задачі, що виникають при дослідженні дифракції акустичних хвиль на нескінченному циліндрі із довільною формою поперечного перерізу, який розташований в середині клина так, що вісь циліндра паралельна до ребра клина. Розвинуто теорію потенціала, що дозволяє звести вказані крайові задачі до інтегральних рівнянь на одновимірному контурі — межі перерізу циліндра. Доведено теореми існування та єдиності розв’язків крайових задач і відповідних їм інтегральних рівнянь. Встановлено принцип граничного поглинання для даної ситуації. Для обчислення ядер інтегральних операторів побудовано ефективні алгоритми.
The boundary-value problems are investigated that arise when studying the diffraction of acoustic waves on an infinite cylinder with cross-section of an arbitrary shape situated inside a wedge so that the axis of the cylinder is parallel to the edge of the wedge. The potential theory is worked out which enables one to reduce these boundary-value problems to integral equations on a one-dimensional contour — the boundary of the cross-section of this cylinder. The theorems on existence and uniqueness of solutions to the boundary-value problems and the corresponding integral equations are proved. For this case, a principle of limit absorption is established. Effective algorithms for calculating the kernels of the integral operators are constructed.
The boundary-value problems are investigated that arise when studying the diffraction of acoustic waves on an infinite cylinder with cross-section of an arbitrary shape situated inside a wedge so that the axis of the cylinder is parallel to the edge of the wedge. The potential theory is worked out which enables one to reduce these boundary-value problems to integral equations on a one-dimensional contour — the boundary of the cross-section of this cylinder. The theorems on existence and uniqueness of solutions to the boundary-value problems and the corresponding integral equations are proved. For this case, a principle of limit absorption is established. Effective algorithms for calculating the kernels of the integral operators are constructed.
Опис
Теми
Статті
Цитування
Краевые задачи для уравнения Гельмгольца в угловой области. I / Ю.К. Подлипенко // Український математичний журнал. — 1993. — Т. 45, № 3. — С. 403–418. — Бібліогр.: 14 назв. — рос.