Классификация бесконечно дифференцируемых периодических функций

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Вивчається множина D∞ нескінченно диференційовних періодичних функцій у термінах узагальнених ψ¯-похідних, що визначаються парою ψ¯=(ψ₁,ψ₂) послідовностей ψ₁ i ψ₂. Зокрема, показано, що кожна функція f, яка належить множині D∞, має хоча б одну похідну, параметри якої ψ₁ i ψ₂ спадають до нуля швидше за будь-яку степеневу функцію, і водночас для будь-якої функції f∈D∞, відмінної від тригонометричного полінома, знайдеться пара ψ, параметри ψ₁ i ψ₂ якої мають таку саму швидкість спадання i для якої ψ¯-похідна вже не існує. Встановлено також нові критерії належності 2π-періодичних дійснозначних на дійсній осі функцій множинам аналітичних на осі та цілих функцій.
The set D∞ of infinitely differentiable periodic functions is studied in terms of generalized ψ¯-derivatives defined by a pair ψ¯=(ψ₁,ψ₂) of sequences ψ₁ and ψ₂. In particular, we establish that every function f from the set D∞ has at least one derivative whose parameters ψ₁ and ψ₂ decrease faster than any power function. At the same time, for an arbitrary function f ∈ D∞ different from a trigonometric polynomial, there exists a pair ψ whose parameters ψ₁ and ψ₂ have the same rate of decrease and for which the ψ¯-derivative no longer exists. We also obtain new criteria for 2π-periodic functions real-valued on the real axis to belong to the set of functions analytic on the axis and to the set of entire functions.

Опис

Теми

Статті

Цитування

Классификация бесконечно дифференцируемых периодических функций / А.И. Степанец, А.С. Сердюк, А.Л. Шидлич // Український математичний журнал. — 2008. — Т. 60, № 12. — С. 1686–1708. — Бібліогр.: 7 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced