Умови існування обмежених розв'язків нелінійних диференціальних і диференціально-функціональних рівнянь
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Пусть E — конечномерное банахово пространство, C⁰(ℝ;E) — банахово пространство непрерывных и ограниченных на ℝ функций со значениями в E, K: C⁰(ℝ,E) → C⁰(ℝ,E) — c-непрерывное и ограниченное отображение, A: E → E — линейное непрерывное отображение и h ∈ C⁰(ℝ,E). Получены условия существования ограниченных решении нелинейного уравнения
dx(t)/dt + (Kx)(t)Ax(t) = h(t), t ∈ ℝ.
Let E be a finite-dimensional Banach space, let C⁰ℝ; E) be a Banach space of functions continuous and bounded on ℝ and taking values in E; let K: C⁰(ℝ, E) → C⁰(ℝ, E) be a c-continuous bounded mapping, let A: E → E be a linear continuous mapping, and let h ∈ C⁰(ℝ, E). We establish conditions for the existence of bounded solutions of the nonlinear equation dx(t)/dt + (Kx)(t)Ax(t) = h(t), t ∈ ℝ.
Let E be a finite-dimensional Banach space, let C⁰ℝ; E) be a Banach space of functions continuous and bounded on ℝ and taking values in E; let K: C⁰(ℝ, E) → C⁰(ℝ, E) be a c-continuous bounded mapping, let A: E → E be a linear continuous mapping, and let h ∈ C⁰(ℝ, E). We establish conditions for the existence of bounded solutions of the nonlinear equation dx(t)/dt + (Kx)(t)Ax(t) = h(t), t ∈ ℝ.
Опис
Теми
Статті
Цитування
Умови існування обмежених розв'язків нелінійних диференціальних і диференціально-функціональних рівнянь / В.Ю. Слюсарчук // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 837–846. — Бібліогр.: 26 назв. — укр.