О модулях над целочисленными групповыми кольцами локально разрешимых групп с ранговыми ограничениями на подгруппы
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Дослiджується ZG-модуль A такий, що Z — кiльце цiлих чисел, група G має нескiнченний секцiйний p-ранг (або нескiнченний 0-ранг), CG(A)=1, A не є мiнiмаксним Z-модулем та для кожної власної пiдгрупи H нескiнченного секцiйного p-рангу (або нескiнченного 0-рангу вiдповiдно) фактор-модуль A/CA(H) є мiнiмаксним Z-модулем. Доведено, що якщо група G локально розв’язна, то група G розв’язна. Отримано деякi властивостi розв’язної групи цього типу.
We study a ZG-module A such that Z is the ring of integer numbers, the group G has an infinite sectional p-rank (or an infinite 0-rank), CG(A) = 1, A is not a minimax Z-module, and, for any proper subgroup H of infinite sectional p-rank (or infinite 0-rank, respectively), the quotient module A/CA (H) is a minimax Z-module. It is shown that if the group G is locally soluble, then it is soluble. Some properties of soluble groups of this kind are discussed. Remove selected
We study a ZG-module A such that Z is the ring of integer numbers, the group G has an infinite sectional p-rank (or an infinite 0-rank), CG(A) = 1, A is not a minimax Z-module, and, for any proper subgroup H of infinite sectional p-rank (or infinite 0-rank, respectively), the quotient module A/CA (H) is a minimax Z-module. It is shown that if the group G is locally soluble, then it is soluble. Some properties of soluble groups of this kind are discussed. Remove selected
Опис
Теми
Статті
Цитування
О модулях над целочисленными групповыми кольцами локально разрешимых групп с ранговыми ограничениями на подгруппы / О.Ю. Дашкова // Український математичний журнал. — 2011. — Т. 63, № 9. — С. 1206-1217. — Бібліогр.: 15 назв. — рос.