Методи побудови регресійних моделей на основі нечітких даних

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут кібернетики ім. В.М. Глушкова НАН України

Анотація

Запропоновано метод побудови регресійних моделей для систем на основі нечітких правил у випадку, коли реакція систем представлена нечіткими даними. Розроблено алгоритм, який з прийнятною точністю будує адекватну кількість правил Такагі-Сугено регресійної моделі з використанням автоматичної стратегії на основі даних спостережень, що надходять. Побудовано процедуру, що використовується для знаходження максимальної схожості параметрів регресійних моделей, у випадку, коли модель залежить від параметрів у консеквентах нечітких правил.
Предложен метод построения регрессионных моделей для систем на основе нечетких правил, в ситуации, когда реакция систем представлена нечеткими данными. Разработан алгоритм, который с приемлемой точностью строит адекватное количество правил Такаги-Сугено регрессионной модели с использованием автоматической стратегии на основе поступающих данных наблюдений. Построена процедура, которая используется для нахождения максимального сходства параметров регрессионных моделей, в случае, когда модель зависит от параметров в консеквентах нечетких правил.
A method for construction of regression models for systems based on fuzzy rules in situation, when reaction of a system is presented by fuzzy data, is proposed. An algorithm, which builds an adequate amount of Takagi-Sugeno rules for regression model with a reasonable accuracy and uses an automated strategy based on incoming data of observations, is developed. A procedure used for finding the maximum parameter similarity of regression models when the model depends on parameters in consequents of fuzzy rules, is constructed.

Опис

Теми

Инструментальные средства информационных технологий

Цитування

Методи побудови регресійних моделей на основі нечітких даних / С.В. Єршов, Т.І. Лико // Компьютерная математика. — 2015. — № 1. — С. 43-49. — Бібліогр.: 7 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced