Ультрафильтры и разбиения абелевых групп
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Доведено, що кожен PS -ультрафільтр на групі без елементів порядку 2 рамсеїв. Для довільного PS-ультрафільтра ϕ на зліченній групі G побудовано відображення f: G → ω таке, що f(ϕ) — P-точка у просторі ω*. Визначено новий клас субселективних ультрафільтрів, значно ширший за клас PS-ультрафільтрів.
We prove that every PS-ultrafilter on a group without second-order elements is a Ramsey ultrafilter. For an arbitrary PS-ultrafilter ϕ on a countable group G, we construct a mapping f: G → ω such that f(ϕ) is a P-point in the space ω*. We determine a new class of subselective ultrafilters, which is considerably wider than the class of PS-ultrafilters.
We prove that every PS-ultrafilter on a group without second-order elements is a Ramsey ultrafilter. For an arbitrary PS-ultrafilter ϕ on a countable group G, we construct a mapping f: G → ω such that f(ϕ) is a P-point in the space ω*. We determine a new class of subselective ultrafilters, which is considerably wider than the class of PS-ultrafilters.
Опис
Теми
Статті
Цитування
Ультрафильтры и разбиения абелевых групп / И.В. Протасов // Український математичний журнал. — 2001. — Т. 53, № 1. — С. 85-93. — Бібліогр.: 7 назв. — рос.