On a periodic type boundary-value problem for first order linear functional differential equations
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Nonimprovable sufficient conditions are established for unique solvability of the boundary-value problem u`(t) = l(u)(t) + q(t), u(a) = λu(b) + c,
as well as for nonnegativeness of its solution, where l : C([a, b]; R) → L([a, b]; R) is a linear bounded
operator, q ∈ L([a, b]; R), λ ∈ R+, and c ∈ R.
Знайдено достатнi умови, що не можуть бути полiпшенi, для однозначної розв’язностi граничної задачi u`(t) = l(u)(t) + q(t), u(a) = λu(b) + c, та невiд’ємностi її розв’язку, де l : C([a, b]; R) → L([a, b]; R) — неперервний лiнiйний оператор, q ∈ L([a, b]; R), λ ∈ R+ та c ∈ R.
Знайдено достатнi умови, що не можуть бути полiпшенi, для однозначної розв’язностi граничної задачi u`(t) = l(u)(t) + q(t), u(a) = λu(b) + c, та невiд’ємностi її розв’язку, де l : C([a, b]; R) → L([a, b]; R) — неперервний лiнiйний оператор, q ∈ L([a, b]; R), λ ∈ R+ та c ∈ R.
Опис
Теми
Цитування
On a periodic type boundary-value problem for first order linear functional differential equations / R. Hakl, A. Lomtatidze, J. Šremr // Нелінійні коливання. — 2002. — Т. 5, № 3. — С. 416-433. — Бібліогр.: 27 назв. — англ.