Чутливість індукованої системи на вiдрiзку
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Рассматриваются динамические системы (C(I), f), в которых функция f отображает отрезок I в себя и естественным образом распространяется на замкнутые связные подмножества данного отрезка. Для упомянутых систем исследуется их чувствительность к начальным условиям. В частности, доказано, что в системе (C(I), f) всегда есть точка, устойчивая по Ляпунову.
We consider dynamical systems (C(I), f), where the function f maps a segment I into itself and is naturally extended to closed connected subsets of the given segment. For the mentioned systems we investigate their sensitivity to the initial conditions. In partial, it is proved that there is always a Lyapunov-stable point in the system (C(I), f).
We consider dynamical systems (C(I), f), where the function f maps a segment I into itself and is naturally extended to closed connected subsets of the given segment. For the mentioned systems we investigate their sensitivity to the initial conditions. In partial, it is proved that there is always a Lyapunov-stable point in the system (C(I), f).
Опис
Теми
Цитування
Чутливість індукованої системи на вiдрiзку / О.В. Рибак // Нелінійні коливання. — 2016. — Т. 19, № 1. — С. 122-128 — Бібліогр.: 8 назв. — укр.