Модифицированный экстраградиентный метод с расхождением Брэгмана для вариационных неравенств
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Предложен новый метод екстраградиентного типа для приближенного решения вариационных неравенств с псевдомонотонными и липшицевимы операторами, действующими в конечномерном линейном нормированном пространстве. Данный метод является модификацией субградиентного екстраградиентного алгоритма с использованием расхождения Брегмана вместо евклидового расстояния. Как и другие схемы, использующие расхождение Брегмана, предложенный метод иногда позволяет эффективно учитывать структуру допустимого множества задачи. Доказана теорема сходимости метода и для случая монотонного оператора полученыо неасимптотические оценки эффективности метода.
Запропоновано новий метод екстраградієнтного типу для наближеного розв’язання варіаційних нерівностей з псевдомонотонними та ліпшицевими операторами, що діють в скінченномірному лінійному нормованому просторі. Даний метод є модифікацією субградієнтного екстраградієнтного алгоритму з використанням розбіжності Брегмана замість евклідової відстані. Як і інші схеми, що використовують розбіжність Брегмана, запропонований метод іноді дозволяє ефективно враховувати структуру допустимої множини задачі. Доведено теорему збіжності методу та для випадку монотонного оператора отримано неасимптотичні оцінки ефективності методу.
A new method of extragradient type for the approximate solution of variational inequalities with pseudomonotone and Lipschitz-continuous operators acting in a finite-dimensional linear normed space is proposed. This method is a modification of the subgradient extragradient algorithm using the Bregman divergence instead of the Eu-clidean distance. Like other schemes using Bregman divergence, the proposed method can sometimes effectively take into account the structure of the feasible set of the problem. A theorem on the convergence of the method is proved and, in the case of a monotone operator, nonasymptotic estimates of the effectiveness of the method are obtained.
Запропоновано новий метод екстраградієнтного типу для наближеного розв’язання варіаційних нерівностей з псевдомонотонними та ліпшицевими операторами, що діють в скінченномірному лінійному нормованому просторі. Даний метод є модифікацією субградієнтного екстраградієнтного алгоритму з використанням розбіжності Брегмана замість евклідової відстані. Як і інші схеми, що використовують розбіжність Брегмана, запропонований метод іноді дозволяє ефективно враховувати структуру допустимої множини задачі. Доведено теорему збіжності методу та для випадку монотонного оператора отримано неасимптотичні оцінки ефективності методу.
A new method of extragradient type for the approximate solution of variational inequalities with pseudomonotone and Lipschitz-continuous operators acting in a finite-dimensional linear normed space is proposed. This method is a modification of the subgradient extragradient algorithm using the Bregman divergence instead of the Eu-clidean distance. Like other schemes using Bregman divergence, the proposed method can sometimes effectively take into account the structure of the feasible set of the problem. A theorem on the convergence of the method is proved and, in the case of a monotone operator, nonasymptotic estimates of the effectiveness of the method are obtained.
Опис
Теми
Оптимальное управление и методы оптимизации
Цитування
Модифицированный экстраградиентный метод с расхождением Брэгмана для вариационных неравенств / В.В. Семенов // Проблемы управления и информатики. — 2018. — № 4. — С. 43-53. — Бібліогр.: 20 назв. — рос.