Новый быстрый рекурсивный алгоритм умножения матриц
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Предложен новый рекурсивный алгоритм умножения матриц порядка n=2ʳ (r > 1), в котором в качестве базового применяется быстрый гибридный алгоритм умножения матриц порядка 4μ при μ=2ʳ⁻¹ (r > 0). По сравнению с известными рекурсивными алгоритмами Штрассена и Винограда Штрассена данный алгоритм позволяет минимизировать на 7% мультипликативную сложность, равную Wм≈0.932n²⋅⁸⁰⁷ операций умножения на глубине рекурсии d=log₂n-3, и сократить вектор вычислений на три рекурсивных шага. Дана оценка мультипликативной сложности представленного алгоритма.
Запропоновано новий рекурсивний алгоритм множення матриць порядку n=2ʳ (r > 1), в якому як базовий застосовується швидкий гібридний алгоритм множення матриць порядку 4μ, коли μ=2ʳ⁻¹ (r > 0). Порівняно з відомими рекурсивними алгоритмами Штрасена та Винограда Штрасена цей алгоритм дозволяє мінімізувати на 7% мультиплікативну складність, яка дорівнює Wм≈0.932n²⋅⁸⁰⁷ операцій множення на глибині рекурсії d=log₂n-3, та скоротити вектор обчислень на три рекурсивних кроки. Наведено оцінку мультиплікативної складності представленого алгоритму.
A new recursive algorithm is proposed for multiplying matrices of order n=2ʳ (r > 1), This algorithm is based on fast hybrid algorithm for multiplying matrices of order 4μ for μ=2ʳ⁻¹ (r > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorithms, the new algorithm minimizes by 7% the multiplicative complexity equal toWм≈0.932n²⋅⁸⁰⁷ multiplication operations at recursive level d d=log₂n-3 and reduces the computation vector by three recursive steps. The multiplicative complexity of the algorithm is estimated.
Запропоновано новий рекурсивний алгоритм множення матриць порядку n=2ʳ (r > 1), в якому як базовий застосовується швидкий гібридний алгоритм множення матриць порядку 4μ, коли μ=2ʳ⁻¹ (r > 0). Порівняно з відомими рекурсивними алгоритмами Штрасена та Винограда Штрасена цей алгоритм дозволяє мінімізувати на 7% мультиплікативну складність, яка дорівнює Wм≈0.932n²⋅⁸⁰⁷ операцій множення на глибині рекурсії d=log₂n-3, та скоротити вектор обчислень на три рекурсивних кроки. Наведено оцінку мультиплікативної складності представленого алгоритму.
A new recursive algorithm is proposed for multiplying matrices of order n=2ʳ (r > 1), This algorithm is based on fast hybrid algorithm for multiplying matrices of order 4μ for μ=2ʳ⁻¹ (r > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorithms, the new algorithm minimizes by 7% the multiplicative complexity equal toWм≈0.932n²⋅⁸⁰⁷ multiplication operations at recursive level d d=log₂n-3 and reduces the computation vector by three recursive steps. The multiplicative complexity of the algorithm is estimated.
Опис
Теми
Кібернетика
Цитування
Новый быстрый рекурсивный алгоритм умножения матриц / Л.Д. Елфимова // Кибернетика и системный анализ. — 2019. — Т. 56, № 4. — С. 33-38. — Бібліогр.: 7 назв. — рос.