On certain homological invariant and its relation with Poincaré duality pairs
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a more general treatment of the invariant E*(G, S,M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S,M). We analyze, through the invariant E*(G, S,M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs.
Опис
Теми
Цитування
On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ.