The containment poset of type A Hessenberg varieties

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Flag varieties are well-known algebraic varieties with many important geometric, combinatorial, and representation theoretic properties. A Hessenberg variety is a subvariety of a flag variety identified by two parameters: an element X of the Lie algebra g and a Hessenberg subspace H ⊆ g. This paper considers when two Hessenberg spaces define the same Hessenberg variety when paired with X. To answer this question we present the containment poset Px of type A Hessenberg varieties with a fixed first parameter X and give a simple and elegant proof that if X is not a multiple of the element 1 then the Hessenberg spaces containing the Borel subalgebra determine distinct Hessenberg varieties. Lastly we give a natural involution on Px that induces a homeomorphism of varieties and prove additional properties of Px when X is a regular nilpotent element.

Опис

Теми

Цитування

The containment poset of type A Hessenberg varieties / E. Drellich // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 195–210. — Бібліогр.: 15 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced