On growth of generalized Grigorchuk's overgroups

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞ = 012012 . . ., is a member of the family {Gω|ω ∈ Ω = {0, 1, 2}ᴺ} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction, we define the family { Ĝω, ω ∈ Ω} of generalized overgroups. Then Ĝ = Ĝ (012)∞ and Gω is a subgroup of Ĝω for each ω ∈ Ω. We prove, if ω is eventually constant, then Ĝω is of polynomial growth and if ω is not eventually constant, then Ĝω is of intermediate growth.

Опис

Теми

Цитування

On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced