Алгоритмы решения задач классификации на основе аппроксимации относительной глубины данных и взвешенного среднего значения

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут кібернетики ім. В.М. Глушкова НАН України

Анотація

Розглянуто актуальну проблему вибору оптимальної гіпотези в задачах класифікації з використанням концепції зваженого середнього значення та функцій глибини. Розроблено та досліджено модифіковані алгоритми для апроксимації відносної глибини даних та відносного зваженого середнього значення розподілу. Запропоновані алгоритми забезпечують поліноміальні наближення до напівпросторової глибини даних та напівпросторового зваженого середнього значення розподілу, що є окремим випадком сімейства зважених середніх значень.
An actual problem of choosing the optimal hypothesis in classification problems using the concept of weighted average value and depth functions are considered. The modified algorithms are constructed and studied to approximate the relative data depth and relative weighted average value of distribution. The proposed algorithms provide polynomial approximations to the half-space data depth and half-space weighted average value which is a special case of the weighted averages family.

Опис

Теми

Роботы и системы искусственного интеллекта

Цитування

Алгоритмы решения задач классификации на основе аппроксимации относительной глубины данных и взвешенного среднего значения / А.А. Галкин // Проблемы управления и информатики. — 2016. — № 5. — С. 144-155. — Бібліогр.: 10 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced