On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Self-similar solutions of the so-called Airy equations, equivalent to the dispersionless nonlinear Schrödinger equation written in Madelung coordinates, are found and studied from the point of view of complete integrability and of their role in the recurrence relation from a bi-Hamiltonian structure for the equations. This class of solutions reduces the PDEs to a finite ODE system, which admits several conserved quantities, which allow for to construction of explicit solutions by quadratures and provide the bi-Hamiltonian formulation for the reduced ODEs.
Опис
Теми
Цитування
On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations / R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 35 назв. — англ.