A Fock Model and the Segal-Bargmann Transform for the Minimal Representation of the Orthosymplectic Lie Superalgebra 𝔬𝔰𝔭(𝑚, 2|2𝑛)

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

The minimal representation of a semisimple Lie group is a 'small' infinite-dimensional irreducible unitary representation. It is thought to correspond to the minimal nilpotent coadjoint orbit in Kirillov's orbit philosophy. The Segal-Bargmann transform is an intertwining integral transformation between two different models of the minimal representation for Hermitian Lie groups of tube type. In this paper, we construct a Fock model for the minimal representation of the orthosymplectic Lie superalgebra 𝔬𝔰𝔭(𝑚, 2|2𝑛). We also construct an integral transform which intertwines the Schrödinger model for the minimal representation of the orthosymplectic Lie superalgebra 𝔬𝔰𝔭(𝑚, 2|2𝑛) with this new Fock model.

Опис

Теми

Цитування

A Fock Model and the Segal-Bargmann Transform for the Minimal Representation of the Orthosymplectic Lie Superalgebra 𝔬𝔰𝔭(𝑚, 2|2𝑛). Sigiswald Barbier, Sam Claerebout and Hendrik De Bie. SIGMA 16 (2020), 085, 33 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced