Convenient formulae for some integrals in perturbation theory
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут фізики конденсованих систем НАН України
Анотація
The free energy and pressure of a fluid, as given by perturbation theory, involve integrals of the hard sphere correlation functions and their density derivatives. In most applications a straightforward procedure would be to obtain these integrals, possibly numerically, using the formulae and computer codes for the hard sphere correlation functions, given previously [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], followed by numerical differentiation with respect to the density and a possible compounding of errors. More sophisticated methods are given in this paper, which is the second in a planned trilogy, drawn from the author's lecture notes. Three representative model fluids are considered. They are the square-well fluid, the Yukawa fluid, and the Lennard-Jones fluid. Each model fluid is popular for theoretical and engineering calculations and can represent a simple fluid such as argon. With the methods presented here, numerical integration and differentiation are not necessary for the square-well and Yukawa fluids. Numerical integration cannot be easily avoided in the case of the Lennard-Jones fluid. However, numerical differentiation with respect to the density is not required.
Зазначено, що вирази для вільної енергії та тиску плину, одержані за допомогою теорії збурень, включають в себе інтеграли як від кореляційних функцій твердих сфер, так і від їх похідних за густиною. В більшості застосувань ці інтеграли можна одержати, також і числово, з застосуванням простої процедури, що використовує формули та комп'ютерні коди для кореляційних функцій твердих сфер, які одержано раніше [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], а також числове диференціювання за густиною, що може призвести у цьому випадку до можливих похибок. Запропоновано складніші методи. Розглянуто відомі моделі плину, взаємодія в яких представляється за допомогою трьох потенціалів, а саме: потенціалу типу прямокутної ями, потенціалу Юкави та потенціалу Леннарда - Джонса. Кожний із цих модельних плинів широко використовується у теоретичних та інженерних обчисленнях для опису такого простого плину як аргон. Із використанням представлених методів числове інтегрування та диференціювання перестає бути необхідним у випадках потенціалу типу прямокутної ями і потенціалу Юкави. Числового інтегрування не можна легко уникнути у випадку потенціалу Леннарда - Джонса. Проте, числове диференціювання за густиною не вимагається.
Зазначено, що вирази для вільної енергії та тиску плину, одержані за допомогою теорії збурень, включають в себе інтеграли як від кореляційних функцій твердих сфер, так і від їх похідних за густиною. В більшості застосувань ці інтеграли можна одержати, також і числово, з застосуванням простої процедури, що використовує формули та комп'ютерні коди для кореляційних функцій твердих сфер, які одержано раніше [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], а також числове диференціювання за густиною, що може призвести у цьому випадку до можливих похибок. Запропоновано складніші методи. Розглянуто відомі моделі плину, взаємодія в яких представляється за допомогою трьох потенціалів, а саме: потенціалу типу прямокутної ями, потенціалу Юкави та потенціалу Леннарда - Джонса. Кожний із цих модельних плинів широко використовується у теоретичних та інженерних обчисленнях для опису такого простого плину як аргон. Із використанням представлених методів числове інтегрування та диференціювання перестає бути необхідним у випадках потенціалу типу прямокутної ями і потенціалу Юкави. Числового інтегрування не можна легко уникнути у випадку потенціалу Леннарда - Джонса. Проте, числове диференціювання за густиною не вимагається.
Опис
Теми
Цитування
Convenient formulae for some integrals in perturbation theory / D. Henderson // Condensed Matter Physics. — 2010. — Т. 13, № 1. — С. 13002: 1-10. — Бібліогр.: 16 назв. — англ.