Гармоничность грассманова отображения подмногообразий в группе Гейзенберга
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Видавничий дім "Академперіодика" НАН України
Анотація
Отримано критерій гармонічності грассманового відображення підмноговиду в групі Гейзенберга. Розглянуті приклади, що демонструють зв'язок між гармонійністю цього відображення і властивостями векторного поля середньої кривини. Введено природний клас циліндричних підмноговидів. Доведено, що гіперповерхня постійної середньої кривини з гармонічним гауссовим відображенням є циліндричною.
We obtain criteria for the harmonicity of the Gauss map of a submanifold in the Heisenberg group and consider the examples demonstrating the connection between the harmonicity of this map and the properties of the mean curvature field. We introduce a natural class of cylindrical submanifolds and prove that a constant mean curvature hypersurface with harmonic Gauss map is cylindrical.
We obtain criteria for the harmonicity of the Gauss map of a submanifold in the Heisenberg group and consider the examples demonstrating the connection between the harmonicity of this map and the properties of the mean curvature field. We introduce a natural class of cylindrical submanifolds and prove that a constant mean curvature hypersurface with harmonic Gauss map is cylindrical.
Опис
Теми
Математика
Цитування
Гармоничность грассманова отображения подмногообразий в группе Гейзенберга / Е.В. Петров // Доп. НАН України. — 2011. — № 10. — С. 25-29. — Бібліогр.: 7 назв. — рос.