Гіперболічні крайові задачі в обмежених кусково-однорідних просторових областях

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут кібернетики ім. В.М. Глушкова НАН України

Анотація

Методом функції впливу та функцій Гріна (головних розв’язків) побудовано інтегральні зображення точних аналітичних розв’язків алгоритмічного характеру гіперболічних крайових задач в обмежених кусково-однорідних (багатошарових) просторових областях. Для побудови головних розв’язків залучено відповідні інтегральні перетворення Фур’є на декартових осі та півосі, а також інтегральне перетворення Фур’є на декартовому сегменті з n точками спряження.
The method of influence functions and Green's function (key solutions) developed integral image accurate analytical solutions of algorithmic nature of hyperbolic boundary value problems in bounded piecewise-homogeneous (multi) spatial regions. To build a major integrated solutions are involved corresponding Fourier transform to Cartesian axis and semi-axles and integral Fourier transform on n Cartesian segment of coupling points.

Опис

Теми

Цитування

Гіперболічні крайові задачі в обмежених кусково-однорідних просторових областях / І.М. Конет // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2012. — Вип. 7. — С. 124-139. — Бібліогр.: 24 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced