Recovery of the Basis of Group π2n Representation on its Subgroup πn×n and Harriman’s Theorem
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут проблем штучного інтелекту МОН України та НАН України
Анотація
The proof of Harriman’s theorem [1] is given for arbitrary order reduced density matrix of both the clear, and the mixed states of fermions at once. Its essential parts are a Pauli exclu- sion principle, rotation group symmetry of spin functions and new commutation relations.
Теорема Гаррімана [1] доведена для редуцироних матриць густини чистого і змішаного станів ферміонів з використанням принципу Паулі, симетрії спінових функцій і нових наслідків, пов'язаних з переміщеннями штрихованих і нештрихованих змінних.
Теорема Гарримана [1] доказана для редуцированных матриц плотности чистого и смешанного состояний фермионов из принципа Паули, симметрии спиновых функций, новых следствий из перестановок штрихованных и не штрихованных переменных.
Теорема Гаррімана [1] доведена для редуцироних матриць густини чистого і змішаного станів ферміонів з використанням принципу Паулі, симетрії спінових функцій і нових наслідків, пов'язаних з переміщеннями штрихованих і нештрихованих змінних.
Теорема Гарримана [1] доказана для редуцированных матриц плотности чистого и смешанного состояний фермионов из принципа Паули, симметрии спиновых функций, новых следствий из перестановок штрихованных и не штрихованных переменных.
Опис
Теми
Алгоритмическое и программное обеспечение параллельных вычислительных интеллектуальных систем
Цитування
Recovery of the Basis of Group π2n Representation on its Subgroup πn×n and Harriman’s Theorem / Klimko G.T. // Штучний інтелект. — 2012. — № 4. — С. 68-76. — Бібліогр.: 8 назв. — англ.