Reparametrizations of vector fields and their shift maps

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

LetM be a smooth manifold, F be a smooth vector field on M, and (Ft) be the local flow of F. Denote by Sh(F) the subset of C^∞(M,M) consisting of maps h : M → M of the following form: h(x) = Fα(x)(x), where _ runs over all smooth functions M → R which can be substituted into F instead of t. This space often contains the identity component of the group of diffeomorphisms preserving orbits of F. In this note it is shown that Sh(F) is not changed under reparametrizations of F, that is for any smooth strictly positive function μ : M → (0,+∞) we have that Sh(F) = Sh(μF). As an application it is proved that F can be reparametrized to induce a circle action on M if and only if there exists a smooth function μ : M → (0,+∞) such that F(x, μ(x)) ≡ x.

Опис

Теми

Геометрія, топологія та їх застосування

Цитування

Reparametrizations of vector fields and their shift maps / S. Maksymenko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 489-498. — Бібліогр.: 8 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced