О полных выпуклых решениях уравнений, близких к уравнению несобственной аффинной сферы

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України

Анотація

Пусть σk - сумма всех главных миноров k-го порядка гессиана (zij) для функции z(x^1,…,x^n). Если функция φ от (n-1)-го положительного переменного принадлежит классу С^3,α, 0 < α < 1, и достаточно близка к тождесвенно единичной функции, то всякое полное выпуклое решение z(x^1,…,x^n) уравнения σn=φ(σ1,...,σn-1) является квадратичным полиномом.
Let σk - the sum of all k-order Hessian principal minors (zij ) for the function z(x^1,…,x^n). If function φ of the (n-1) positive variable belongs to the С^3,α class, 0 < α < 1, and if it is sufficiently close to the identically single function, then any complete convex solution z(x^1,…,x^n) of the equation σn=φ(σ1,...,σn-1) is a quadratic polynomial.

Опис

Теми

Цитування

О полных выпуклых решениях уравнений, близких к уравнению несобственной аффинной сферы / В.Н. Кокарев // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 4. — С. 448-467. — Бібліогр.: 13 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced