Алгоритм для решения нелинейных краевых задач по τ-методу Ланцоша в системах компьютерной алгебры

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут проблем штучного інтелекту МОН України та НАН України

Анотація

Построен алгебраический алгоритм для преобразования многоточечной линейной краевой задачи для дифференциального уравнения порядка k с линейной частью – линейный дифференциальный оператор многочленными коэффициентами порядка k и нелинейной частью – функция f( y, y',..., y^(k-1) ) в алгебраический многочлен порядка n (n принадлежит N). Этот многочлен – аппроксимация решения y(x), x принадлежит [a,b], исходной краевой задачи. Эта аппроксимация оптимальна в пространстве C^k[a,b].
Побудовано алгебраїчний алгоритм для перетворення багатоточкової лiнiйної крайової задачi для диференцiального рiвняння порядку k з лiнiйною частиною – лiнiйний диференцiальний оператор з коефiцiєнтами – многочленами та нелiнiйною – функцiя f( y, y',…, y^(k-1) ) на алгебраїчний многочлен порядку n (n належить N). Цей многочлен – апроксимацiя розв’язку y(x), x належить [a,b], оригiнальної крайової задачi. Ця апроксимацiя оптимальна в просторi C^k[a,b].
We constructed the algebraic algorithm for transforming the nonlinear boundary-value problem into the algebraic polynomial of order n (n belongs N). This polynomial is the solution y(x), x e [a,b] approximation for the problem. This approximation is optimal in the space C^k[a,b].

Опис

Теми

Системы принятия решений, планирования и моделирования

Цитування

Алгоритм для решения нелинейных краевых задач по Ʈ-методу Ланцоша в системах компьютерной алгебры / П.Н. Денисенко // Штучний інтелект. — 2009. — № 4. — С. 119-129. — Бібліогр.: 5 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced