Точный порядок приближения периодических функций полиномами Бернштейна–Стечкина
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Видавничий дім "Академперіодика" НАН України
Анотація
Найден точный порядок приближения произвольных периодических функций тригонометрическими полиномами Бернштейна–Стечкина. Для этого пришлось ввести специальный модуль гладкости.
Знайдено точний порядок наближення довiльних перiодичних функцiй тригонометричними полiномами Бернштейна–Стєчкiна. Для цього пiдiйшов лише спецiальний модуль гладкостi.
The exact order of approximation of arbitrary periodic functions by Bernstein–Stechkin trigonometric polynomials is found. In order to do this, it was necessary to introduce a special module of smoothness.
Знайдено точний порядок наближення довiльних перiодичних функцiй тригонометричними полiномами Бернштейна–Стєчкiна. Для цього пiдiйшов лише спецiальний модуль гладкостi.
The exact order of approximation of arbitrary periodic functions by Bernstein–Stechkin trigonometric polynomials is found. In order to do this, it was necessary to introduce a special module of smoothness.
Опис
Теми
Математика
Цитування
Точный порядок приближения периодических функций полиномами Бернштейна–Стечкина / Р.М. Тригуб // Доповiдi Нацiональної академiї наук України. — 2013. — № 7. — С. 26–29— Бібліогр.: 8 назв. — рос.