Прямая и обратная задачи для конечномерных возмущений операторов
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Видавничий дім "Академперіодика" НАН України
Анотація
Проведен спектральный анализ самосопряженного оператора, который является конечномерным возмущением оператора второй производной на конечном отрезке. Описан
спектр этого оператора и решена обратная спектральная задача, позволяющая по n+1
спектру восстановить возмущение. Приведена характеристика спектральных данных обратной задачи.
Проведено спектральний аналiз самоспряженого оператора, який є скiнченновимiрним збуренням оператора другої похiдної на обмеженому вiдрiзку. Описано спектр цього оператора та розв’язано обернену спектральну задачу, що дає можливiсть за n + 1 спектром вiдновити збурення. Наведено характеристику спектральних даних оберненої задачi.
Spectral analysis of a self-adjoint operator, which is a finite-dimensional perturbation of the second derivative operator on a finite segment, is realized. The spectrum of this operator is described, and the inverse spectral problem is solved allowing us to find the corresponding perturbation from the n + 1 spectrum. Spectral data of the inverse problem are described.
Проведено спектральний аналiз самоспряженого оператора, який є скiнченновимiрним збуренням оператора другої похiдної на обмеженому вiдрiзку. Описано спектр цього оператора та розв’язано обернену спектральну задачу, що дає можливiсть за n + 1 спектром вiдновити збурення. Наведено характеристику спектральних даних оберненої задачi.
Spectral analysis of a self-adjoint operator, which is a finite-dimensional perturbation of the second derivative operator on a finite segment, is realized. The spectrum of this operator is described, and the inverse spectral problem is solved allowing us to find the corresponding perturbation from the n + 1 spectrum. Spectral data of the inverse problem are described.
Опис
Теми
Математика
Цитування
Прямая и обратная задачи для конечномерных возмущений операторов / В.А. Золотарев // Доповiдi Нацiональної академiї наук України. — 2015. — № 1. — С. 7-12. — Бібліогр.: 3 назв. — рос.