О задаче Римана–Гильберта для аналитических функций в круговых областях

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Видавничий дім "Академперіодика" НАН України

Анотація

Доказано существование однозначных аналитических решений в единичном круге и многозначных аналитических решений в областях, ограниченных конечным числом окружностей, задачи Римана–Гильберта с коэффициентами счетно-ограниченной вариации и граничными данными, измеримыми относительно логарифмической емкости. Показано, что пространства решений имеют бесконечную размерность.
Доведено iснування однозначних аналiтичних розв’язкiв в одиничному колi та багатозначних аналiтичних розв’язкiв в областях, обмежених скiнченним числом кiл, задачi Рiмана–Гiльберта iз коефiцiєнтами злiченно-обмеженої варiацiї та граничними даними, що є вимiрюваними вiдносно логарифмiчної ємностi. Показано, що простори розв’язкiв мають нескiнченну розмiрнiсть.
The existence of single-valued analytic solutions in a unit disk and multivalent analytic solutions in domains bounded by a finite collection of circles is proved for the Riemann–Hilbert problem with coefficients of sigma finite variation and with boundary data that are measurable with respect to the logarithmic capacity. It is shown that these spaces of solutions have the infinite dimension.

Опис

Теми

Математика

Цитування

О задаче Римана–Гильберта для аналитических функций в круговых областях / А.С. Ефимушкин, В.И. Рязанов // Доповiдi Нацiональної академiї наук України. — 2016. — № 2. — С. 13-16. — Бібліогр.: 10 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced