Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We show that equivariant tilting modules over equivariant algebras induce equivalences of derived factorization categories. As an application, we show that the derived category of a noncommutative resolution of a linear section of a Pfaffian variety is equivalent to the derived factorization category of a noncommutative gauged Landau-Ginzburg model (Λ, χ, 𝓌)ᴳᵐ, where Λ is a noncommutative resolution of the quotient singularity 𝑊/GSp(𝑄) arising from a certain representation 𝑊 of the symplectic similitude group GSp(𝑄) of a symplectic vector space 𝑄.

Опис

Теми

Цитування

Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations. Yuki Hirano. SIGMA 17 (2021), 055, 43 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced