Equivariant Join and Fusion of Noncommutative Algebras

dc.contributor.authorDąbrowski, L.
dc.contributor.authorHadfield, T.
dc.contributor.authorHajac, P.M.
dc.date.accessioned2019-02-13T17:50:17Z
dc.date.available2019-02-13T17:50:17Z
dc.date.issued2015
dc.description.abstractWe translate the concept of the join of topological spaces to the language of C∗-algebras, replace the C∗-algebra of functions on the interval [0,1] with evaluation maps at 0 and 1 by a unital C∗-algebra C with appropriate two surjections, and introduce the notion of the fusion of unital C∗-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra P with the coacting Hopf algebra H. We prove that, if the comodule algebra P is principal, then so is the fusion comodule algebra. When C=C([0,1]) and the two surjections are evaluation maps at 0 and 1, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal G-bundle X, the diagonal action of G on the join X∗G is free.uk_UA
dc.description.sponsorshipAll authors are grateful to Piotr M. So ltan and Karen R. Strung for references concerning the minimal tensor product and the Jiang–Su C ∗ -algebra respectively. Ludwik D¸abrowski and Piotr M. Hajac were partially supported by PRIN 2010-11 grant “Operator Algebras, Noncommutative Geometry and Applications” and NCN grant 2011/01/B/ST1/06474, respectively. Tom Hadfield was financed via the EU Transfer of Knowledge contract MKTD-CT-2004-509794. Also, Piotr M. Hajac is very thankful to SISSA for its hospitality.uk_UA
dc.identifier.citationEquivariant Join and Fusion of Noncommutative Algebras / L. Dąbrowski, T. Hadfield, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 46L85; 58B32
dc.identifier.otherDOI:10.3842/SIGMA.2015.082
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147156
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleEquivariant Join and Fusion of Noncommutative Algebrasuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
082-Dąbrowski.pdf
Розмір:
316.76 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: