Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions

dc.contributor.authorLangowski, B.
dc.date.accessioned2019-02-13T17:25:21Z
dc.date.available2019-02-13T17:25:21Z
dc.date.issued2015
dc.description.abstractWe apply a symmetrization procedure to the setting of Jacobi expansions and study potential spaces in the resulting situation. We prove that the potential spaces of integer orders are isomorphic to suitably defined Sobolev spaces. Among further results, we obtain a fractional square function characterization, structural theorems and Sobolev type embedding theorems for these potential spaces.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. The author would like to express his gratitude to Professor Adam Nowak for indicating the topic and constant support during the preparation of this paper. Research supported by the National Science Centre of Poland, project No. 2013/09/N/ST1/04120.uk_UA
dc.identifier.citationPotential and Sobolev Spaces Related to Symmetrized Jacobi Expansions / B. Langowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 29 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 42C10; 42C05; 42C20
dc.identifier.otherDOI:10.3842/SIGMA.2015.073
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147141
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titlePotential and Sobolev Spaces Related to Symmetrized Jacobi Expansionsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
073-Langowski.pdf
Розмір:
413.31 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: