Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension

dc.contributor.authorTorbin, G.
dc.date.accessioned2009-11-19T10:27:51Z
dc.date.available2009-11-19T10:27:51Z
dc.date.issued2007
dc.description.abstractThe paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension.en_US
dc.identifier.citationProbability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ.en_US
dc.identifier.issn0321-3900
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/4497
dc.language.isoenen_US
dc.publisherІнститут математики НАН Україниen_US
dc.statuspublished earlieren_US
dc.titleProbability distributions with independent Q-symbols and transformations preserving the Hausdorff dimensionen_US
dc.typeArticleen_US

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
2007_13_1-2_27.pdf
Розмір:
153.62 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
1.82 KB
Формат:
Item-specific license agreed upon to submission
Опис: