On closures in semitopological inverse semigroups with continuous inversion

dc.contributor.authorGutik, O.
dc.date.accessioned2019-06-14T03:26:11Z
dc.date.available2019-06-14T03:26:11Z
dc.date.issued2014
dc.description.abstractWe study the closures of subgroups, semilattices and different kinds of semigroup extensions in semitopological inverse semigroups with continuous inversion. In particularly we show that a topological group G is H-closed in the class of semitopological inverse semigroups with continuous inversion if and only if G is compact, a Hausdorff linearly ordered topological semilattice E is H-closed in the class of semitopological semilattices if and only if E is H-closed in the class of topological semilattices, and a topological Brandt λ⁰-extension of S is (absolutely) H-closed in the class of semitopological inverse semigroups with continuous inversion if and only if so is S. Also, we construct an example of an H-closed non-absolutely H-closed semitopological semilattice in the class of semitopological semilattices.uk_UA
dc.description.sponsorshipThe author acknowledges Oleksandr Ravskyi for his comments and suggestions.uk_UA
dc.identifier.citationOn closures in semitopological inverse semigroups with continuous inversion / O. Gutik // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 59–85. — Бібліогр.: 33 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC:22A05, 22A15, 22A26; 20M18, 20M15.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/153347
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleOn closures in semitopological inverse semigroups with continuous inversionuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Gutik.pdf
Розмір:
436.19 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: