Elliptic Biorthogonal Polynomials Connected with Hermite's Continued Fraction

dc.contributor.authorVinet, L.
dc.contributor.authorZhedanov, A.
dc.date.accessioned2019-02-16T09:00:30Z
dc.date.available2019-02-16T09:00:30Z
dc.date.issued2007
dc.description.abstractWe study a family of the Laurent biorthogonal polynomials arising from the Hermite continued fraction for a ratio of two complete elliptic integrals. Recurrence coefficients, explicit expression and the weight function for these polynomials are obtained. We construct also a new explicit example of the Szegö polynomials orthogonal on the unit circle. Relations with associated Legendre polynomials are considered.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. The authors thank to the referees for their remarks leading to improvement of the text. A.Zh. thanks Centre de Recherches Math´ematiques of the Universit´e de Montr´eal for hospitality.uk_UA
dc.identifier.citationElliptic Biorthogonal Polynomials Connected with Hermite's Continued Fraction / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 33C45; 42C05
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147832
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleElliptic Biorthogonal Polynomials Connected with Hermite's Continued Fractionuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Vinet.pdf
Розмір:
266.83 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: