Multivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices

dc.contributor.authorRosengren, H.
dc.date.accessioned2019-02-06T17:23:16Z
dc.date.available2019-02-06T17:23:16Z
dc.date.issued2006
dc.description.abstractWe study multivariable Christoffel-Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, for such kernels. In subsequent work, these results are applied in combinatorics (enumeration of marked shifted tableaux) and number theory (representation of integers as sums of squares).uk_UA
dc.description.sponsorshipThis paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. I thank Alain Lascoux and Eric Rains for communicating their unpublished works, as well as for several useful comments. The research was supported by the Swedish Science Research Council (Vetenskapsradet).uk_UA
dc.identifier.citationMultivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices / H. Rosengren // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 32 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 15A15; 15A52; 42C05
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146068
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleMultivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matricesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
85-Rosengren.pdf
Розмір:
241.04 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: