Twistor Geometry of Null Foliations in Complex Euclidean Space

dc.contributor.authorTaghavi-Chabert, A.
dc.date.accessioned2019-02-18T15:47:04Z
dc.date.available2019-02-18T15:47:04Z
dc.date.issued2017
dc.description.abstractWe give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of Qⁿ, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CEⁿ can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.uk_UA
dc.description.sponsorshipThe author would like to thank Boris Doubrov, Lionel Mason and Jan Slov´ak for helpful discussions and comments, and the anonymous referees for their reports. He is also grateful to Lukas Vokrınek and Andreas Cap for clarifying some aspects of Section 2.5. This work was funded by a GACR (Czech Science Foundation) post-doctoral grant GP14-27885P.uk_UA
dc.identifier.citationTwistor Geometry of Null Foliations in Complex Euclidean Space / A. Taghavi-Chabert // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 32L25; 53C28; 53C12
dc.identifier.otherDOI:10.3842/SIGMA.2017.005
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148560
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleTwistor Geometry of Null Foliations in Complex Euclidean Spaceuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
005-Taghavi-Chabert.pdf
Розмір:
725.93 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: