On the difference between the spectral radius and the maximum degree of graphs
| dc.contributor.author | Oboudi, M.R. | |
| dc.date.accessioned | 2019-06-18T18:15:53Z | |
| dc.date.available | 2019-06-18T18:15:53Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Let G be a graph with the eigenvalues λ₁(G)≥⋯≥λn(G). The largest eigenvalue of G, λ₁(G), is called the spectral radius of G. Let β(G)=Δ(G)−λ₁(G), where Δ(G) is the maximum degree of vertices of G. It is known that if G is a connected graph, then β(G)≥0 and the equality holds if and only if G is regular. In this paper we study the maximum value and the minimum value of β(G) among all non-regular connected graphs. In particular we show that for every tree T with n≥3 vertices, n−1−√(n−1) ≥ β(T) ≥ 4sin²(π/(2n+2)). Moreover, we prove that in the right side the equality holds if and only if T≅Pn and in the other side the equality holds if and only if T≅Sn, where Pn and Sn are the path and the star on n vertices, respectively. | uk_UA |
| dc.identifier.citation | On the difference between the spectral radius and the maximum degree of graphs / M.R. Oboudi // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 302-307. — Бібліогр.: 17 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC:05C31, 05C50, 15A18. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/156636 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | On the difference between the spectral radius and the maximum degree of graphs | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: