Gauss Hypergeometric Representations of the Ferrers Function of the Second Kind

dc.contributor.authorCohl, Howard S.
dc.contributor.authorPark, Justin
dc.contributor.authorVolkmer, Hans
dc.date.accessioned2025-12-29T11:04:39Z
dc.date.issued2021
dc.description.abstractWe derive all eighteen Gauss hypergeometric representations for the Ferrers function of the second kind, each with a different argument. They are obtained from the eighteen hypergeometric representations of the associated Legendre function of the second kind by using a limit representation. For the 18 hypergeometric arguments that correspond to these representations, we give geometrical descriptions of the corresponding convergence regions in the complex plane. In addition, we consider a corresponding single sum Fourier expansion for the Ferrers function of the second kind. In four of the eighteen cases, the determination of the Ferrers function of the second kind requires the evaluation of the hypergeometric function separately above and below the branch cut at [1,∞). To complete these derivations, we use well-known results to derive expressions for the hypergeometric function above and below its branch cut. Finally, we give a detailed review of the 1888 paper by Richard Olbricht, who was the first to study hypergeometric representations of Legendre functions.
dc.identifier.citationGauss Hypergeometric Representations of the Ferrers Function of the Second Kind. Howard S. Cohl, Justin Park and Hans Volkmer. SIGMA 17 (2021), 053, 33 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.053
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 33C05; 33C55; 42B05
dc.identifier.otherarXiv:2009.07318
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211296
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleGauss Hypergeometric Representations of the Ferrers Function of the Second Kind
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
053-Cohl.pdf
Розмір:
711.02 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: