N – real fields

dc.contributor.authorFeigelstock, S.
dc.date.accessioned2019-06-17T10:42:57Z
dc.date.available2019-06-17T10:42:57Z
dc.date.issued2003
dc.description.abstractA field F is n-real if −1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank (AAt ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3-real field F is 2-real closed, then F is a real closed field. For F a quadratic extension of the field of rational numbers, the greatest integer n such that F is n-real is determined.uk_UA
dc.identifier.citationN – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification: 12D15.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/155693
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleN – real fieldsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Feigelstock.pdf
Розмір:
123.83 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: