Invariant Differential Forms on Complexes of Graphs and Feynman Integrals

dc.contributor.authorBrown, Francis
dc.date.accessioned2026-01-02T08:30:09Z
dc.date.issued2021
dc.description.abstractWe study differential forms on an algebraic compactification of a moduli space of metric graphs. Canonical examples of such forms are obtained by pulling back invariant differentials along a tropical Torelli map. The invariant differential forms in question generate the stable real cohomology of the general linear group, as shown by Borel. By integrating such invariant forms over the space of metrics on a graph, we define canonical period integrals associated to graphs, which we prove are always finite and take the form of generalised Feynman integrals. Furthermore, canonical integrals can be used to detect the non-vanishing of homology classes in the commutative graph complex. This theory leads to insights about the structure of the cohomology of the commutative graph complex, and new connections between graph complexes, motivic Galois groups, and quantum field theory.
dc.description.sponsorshipThis project has received funding from the European Research Council (ERC)under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 724638). Many thanks to M.Chan (who spotted a mistake in an earlier proof of Theorem 7.4), S. Galatius (who pointed out that (4.1) follows from the Amitsur–Levitzki theorem), S. Payne, G. Segal, for discussions, and especially R. Hain and K. Vogtmann, of whom the present project is an offshoot of joint work. I am very grateful to O. Schnetz for computing the above examples of canonical integrals, M. Borinsky for sharing his computations of Euler characteristics, C. Dupont and the referees for many helpful comments and corrections.
dc.identifier.citationInvariant Differential Forms on Complexes of Graphs and Feynman Integrals. Francis Brown. SIGMA 17 (2021), 103, 54 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.103
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 18G85; 11F75; 11M32; 81Q30
dc.identifier.otherarXiv:2101.04419
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211424
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleInvariant Differential Forms on Complexes of Graphs and Feynman Integrals
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
103-Brown.pdf
Розмір:
955.54 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: