Thinplate Splines on the Sphere
| dc.contributor.author | Beatson, R.K. | |
| dc.contributor.author | Zu Castell, W. | |
| dc.date.accessioned | 2025-11-26T11:25:47Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | In this paper, we give explicit closed forms for the semi-reproducing kernels associated with thinplate spline interpolation on the sphere. Polyharmonic or thinplate splines for Rᵈ were introduced by Duchon and have become a widely used tool in myriad applications. The analogues for Sᵈ⁻¹ are the thin plate splines for the sphere. The topic was first discussed by Wahba in the early 1980s, for the S² case. Wahba presented the associated semi-reproducing kernels as infinite series. These semi-reproducing kernels play a central role in expressions for the solution of the associated spline interpolation and smoothing problems. The main aims of the current paper are to give a recurrence for the semi-reproducing kernels and also to use the recurrence to obtain explicit closed-form expressions for many of these kernels. The closed-form expressions will, in many cases, be significantly faster to evaluate than the series expansions. This will enhance the practicality of using these thinplate splines for the sphere in computations. | |
| dc.identifier.citation | Thinplate Splines on the Sphere / R.K. Beatson, W. Zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ. | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2018.083 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 42A82; 33C45; 42C10; 62M30 | |
| dc.identifier.other | arXiv: 1801.01313 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/209767 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Thinplate Splines on the Sphere | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 083-Beatson.pdf
- Розмір:
- 465.01 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: