q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP (q-cKP) hierarchy, i.e. l-constraints of q-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of q-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear q-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of q-deformation (q-effects) in single q-soliton from the simplest τ function of the q-KP hierarchy and in multi-q-soliton from one-component q-cKP hierarchy, and their dependence of x and q, were also presented. Finally, we observe that q-soliton tends to the usual soliton of the KP equation when x → 0 and q → 1, simultaneously.

Опис

Теми

Цитування

q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy / Jingsong He, Yinghua Li, Yi Cheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 40 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced