О двухциклической системе обслуживания

dc.contributor.authorКоваленко, И.Н.
dc.date.accessioned2017-10-04T19:49:02Z
dc.date.available2017-10-04T19:49:02Z
dc.date.issued2015
dc.description.abstractЛасло Лакатош [1, 2] ввел в рассмотрение систему обслуживания, в которой время ожидания V требования увеличивается до величины W, кратной T. Эта постановка задачи взята из авиации: величина T интерпретируется как время обхода самолетом круга, на который он отправляется в случае занятости взлетно-посадочной полосы. В настоящей статье изучается схема обслуживания, в которой V увеличивается до величины T1x+T2y , где T1 и T2 — заданные числа (времена обхода двух кругов), x и y — зависимые от V целые числа (количества их обходов). Доказана эргодическая теорема для соответствующей вложенной цепи Маркова. Приведен алгоритм вычисления x и y по заданному значению V.uk_UA
dc.description.abstractЛ. Лакатош ввів до розгляду систему обслуговування, в якій час очікування V вимоги збільшується до величини, кратної T. Ця модель умотивована проблемами авіації: T інтерпретується як час обходу літаком кола у випадку зайнятості смуги для зльоту і посадки. У даній статті вивчається система обслуговування, в якій V зростає до величини T1x+T2y, де T1 і T2 — задані числа (терміни часу обходу двох кіл), x та y — залежні від V цілі числа (кількість обходів). Доведено ергодичну теорему для відповідного ланцюга Маркова. Наведено алгоритм обчислення x та y за заданим значенням V.uk_UA
dc.description.abstractL. Lakatos introduced a queuing system in which the waiting time V of a customer is increased up to a value multiple of T. The model is motivated by a problem occurred in aviation. Indeed, T is just the aircraft round time of the emergency circle as soon as the runway is occupied. In the presented paper, a queuing system is considered in which V is increased up to the time T1x+T2y, where T1 and T2 are constant time intervals (round times of two emergency circles) whereas x and y are V-dependent integers (numbers of rounds). An ergodic theorem is proved for a proper embedded Markov chain. An algorithm is given to compute x and y given V.uk_UA
dc.identifier.citationО двухциклической системе обслуживания / И.Н. Коваленко // Кибернетика и системный анализ. — 2015. — Т. 51, № 1. — С. 59-64. — Бібліогр.: 9 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc519.572
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124758
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемный анализuk_UA
dc.titleО двухциклической системе обслуживанияuk_UA
dc.title.alternativeПро двоциклічну систему обслуговуванняuk_UA
dc.title.alternativeA two-cyclic queuing systemuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Kovalenko.pdf
Розмір:
88.85 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: