Arithmetic properties of exceptional lattice paths
dc.contributor.author | Rump, W. | |
dc.date.accessioned | 2019-06-20T03:11:02Z | |
dc.date.available | 2019-06-20T03:11:02Z | |
dc.date.issued | 2006 | |
dc.description.abstract | For a fixed real number ρ > 0, let L be an affine line of slope ρ ⁻¹ in R ² . We show that the closest approximation of L by a path P in Z ² is unique, except in one case, up to integral translation. We study this exceptional case. For irrational ρ, the projection of P to L yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If ρ satisfies an equation x ² = mx + 1 with m ∈ Z, both quasicrystals are mapped to each other by a substitution rule. For rational ρ, we characterize the periodic parts of P by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras Hρ(K) over a field K introduced in a recent proof of a conjecture of Ro˘ıter. | uk_UA |
dc.identifier.citation | Arithmetic properties of exceptional lattice paths / W. Rump // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 101–118. — Бібліогр.: 16 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 05B30, 11B50; 52C35, 11A0 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/157386 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Arithmetic properties of exceptional lattice paths | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: