Артиновы кольца с нильпотентной присоединенной группой

dc.contributor.authorЕвстафьев, Р.Ю.
dc.date.accessioned2020-02-11T11:13:22Z
dc.date.available2020-02-11T11:13:22Z
dc.date.issued2006
dc.description.abstractНехай R — артинове кільце, необов'язково з одиницею, Z(R) — його центр i R⁰ — група оборотних елементів кільця R відносно операції a о b = a + b + ab. Доводиться, що приєднана група R⁰ нільпотентна та множина Z(R)+R⁰ породжує R як кільце тоді і тільки тоді, коли R є прямою сумою скінченного числа ідеалів, кожен з яких є або нільпотентним кільцем, або локальним кільцем з нільпотентною мультиплікативною групою.uk_UA
dc.description.abstractLet R be an Artinian ring (not necessarily with unit element), let Z(R) be its center, and let R⁰ be the group of invertible elements of the ring R with respect to the operation a о b = a + b + ab. We prove that the adjoint group R⁰ is nilpotent and the set Z(R)+R⁰ generates R as a ring if and only if R is the direct sum of finitely many ideals each of which is either a nilpotent ring or a local ring with nilpotent multiplicative group.uk_UA
dc.identifier.citationАртиновы кольца с нильпотентной присоединенной группой / Р.Ю. Евстафьев // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 417–426. — Бібліогр.: 13 назв. — рос.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc519.1
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/164957
dc.language.isoruuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectКороткі повідомленняuk_UA
dc.titleАртиновы кольца с нильпотентной присоединенной группойuk_UA
dc.title.alternativeArtinian rings with nilpotent adjoint groupuk_UA
dc.typeArticleen_US

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
11-Evstafyev.pdf
Розмір:
143.31 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: