On a Quantization of the Classical θ-Functions

dc.contributor.authorBrezhnev, Y.V.
dc.date.accessioned2019-02-12T20:34:07Z
dc.date.available2019-02-12T20:34:07Z
dc.date.issued2015
dc.description.abstractThe Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Algebraic Methods in Dynamical Systems. The full collection is available at http://www.emis.de/journals/SIGMA/AMDS2014.html. The author would like to thank Dima Kaparulin and Peter Kazinsky for stimulating discussions and my special thanks are addressed to S. Lyakhovich and A. Sharapov for valuable consultations. Also, much gratitude is extended to the anonymous referee for helpful suggestions and constructive criticism, which resulted in considerable improvement of the final text. The study was supported by the Tomsk State University Academic D. Mendeleev Fund Program.uk_UA
dc.identifier.citationOn a Quantization of the Classical θ-Functions / Y.V. Brezhnev // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 19 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14H70; 33E05; 33E10; 37N20; 37J35; 81S10
dc.identifier.otherDOI:10.3842/SIGMA.2015.035
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147012
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOn a Quantization of the Classical θ-Functionsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
035-Brezhnev.pdf
Розмір:
579.78 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: