Peterson's Deformations of higher dimensional quadrics
dc.contributor.author | Dincă, I.I. | |
dc.date.accessioned | 2019-02-07T13:56:28Z | |
dc.date.available | 2019-02-07T13:56:28Z | |
dc.date.issued | 2010 | |
dc.description.abstract | We provide the first explicit examples of deformations of higher dimensional quadrics: a straightforward generalization of Peterson's explicit 1-dimensional family of deformations in C³ of 2-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere S² ⊂ C³ to an explicit (n–1)-dimensional family of deformations in C²ⁿ⁻¹ of n-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere Sⁿ ⊂ Cⁿ⁺¹ and non-degenerate joined second fundamental forms. It is then proven that this family is maximal. | uk_UA |
dc.description.sponsorship | I would like to thank the referees for useful suggestions. The research has been supported by the University of Buchares | uk_UA |
dc.identifier.citation | Peterson's Deformations of higher dimensional quadrics / Dincă I.I. // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 7 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 53A07; 53B25; 35Q58 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/146115 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Peterson's Deformations of higher dimensional quadrics | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 006-Dianca.pdf
- Розмір:
- 242.52 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: