Bôcher Contractions of Conformally Superintegrable Laplace Equations

dc.contributor.authorKalnins, E.G.
dc.contributor.authorMiller Jr., Willard
dc.contributor.authorSubag, E.
dc.date.accessioned2019-02-15T18:56:59Z
dc.date.available2019-02-15T18:56:59Z
dc.date.issued2016
dc.description.abstractThe explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often ''hidden''. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems on constant curvature spaces are related by geometric limits, induced by generalized Inönü-Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. However, the limits have no satisfactory Lie algebra contraction interpretations for underlying spaces with 1- or 0-dimensional Lie algebras. We show that these systems can be best understood by transforming them to Laplace conformally superintegrable systems, with flat space conformal symmetry group SO(4,C), and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation in terms of roots of quadratic forms. We show that Bôcher's prescription for coalescing roots of these forms induces contractions of the conformal algebra so(4,C) to itself and yields a mechanism for classifying all Helmholtz superintegrable systems and their limits. In the paper [Acta Polytechnica, to appear, arXiv:1510.09067], we announced our main findings. This paper provides the proofs and more details.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. This work was partially supported by a grant from the Simons Foundation (# 208754 to Willard Miller Jr).uk_UA
dc.identifier.citationBôcher Contractions of Conformally Superintegrable Laplace Equations / E.G. Kalnins, Willard Miller Jr., E. Subag // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 81R05; 81R12; 33C45
dc.identifier.otherDOI:10.3842/SIGMA.2016.038
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147737
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleBôcher Contractions of Conformally Superintegrable Laplace Equationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
038-Kalnins.pdf
Розмір:
1.45 MB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: