Метод автоматической классификации на базе нечеткого отношения сходства

dc.contributor.authorГуляницкий, Л.Ф.
dc.contributor.authorРясная, И.И.
dc.date.accessioned2018-03-21T20:22:26Z
dc.date.available2018-03-21T20:22:26Z
dc.date.issued2016
dc.description.abstractДля решения задачи автоматической классификации предлагается IFC-метод нечеткой кластеризации, в котором используются новые нечеткие логические операторы — пороговые треугольные нормы и конормы. Данный метод отличается от методов кластеризации на основе нечеткого отношения эквивалентности тем, что позволяет разрабатывать более быстрые алгоритмы построения кластеров. При этом не искажаются данные о связях между элементами исследуемого множества, что обеспечивает прозрачность интерпретации результатов исследований. Приведены примеры применения метода к некоторым известным задачам.uk_UA
dc.description.abstractДля розв’язування задачі автоматичної класифікації запропоновано IFC-метод нечіткої кластеризації, у якому використовуються нові нечіткі логічні оператори — порогові трикутні норми і конорми. Цей метод відрізняється від методів кластеризації на основі нечіткого відношення еквівалентності тим,що дозволяє розробляти більш швидкі алгоритми побудови кластерів. При цьому не (спотворюються) змінюються дані про зв’язки між елементами множини, що досліджується. Це забезпечує прозорість інтерпретування результатів досліджень. Наведено приклади застосування методу до деяких відомих задач.uk_UA
dc.description.abstractThe IFC-method of fuzzy clustering is proposed to solve the problem of automatic classification/ The method is based on new fuzzy logical operators: threshold triangular norms and conorms. This method differs from clustering methods based on fuzzy equivalence relation since it allows developing faster algorithms to generate clusters without distorting data on connections between elements of the studied set. This provides transparent interpretation of the results of research. The results of application of the method to some well-known problems are givenuk_UA
dc.identifier.citationМетод автоматической классификации на базе нечеткого отношения сходства / Л.Ф. Гуляницкий, И.И. Рясная // Кибернетика и системный анализ. — 2016. — Т. 52, № 1. — С. 34-41. — Бібліогр.: 7 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc519.8
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/131388
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectКибернетикаuk_UA
dc.titleМетод автоматической классификации на базе нечеткого отношения сходстваuk_UA
dc.title.alternativeМетод автоматичної класифікації на базі нечіткого відношенняuk_UA
dc.title.alternativeMethod of automatic classification on the basis of fuzzy similarity relationuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-Gulyanitsky.pdf
Розмір:
106.43 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: