Some Remarks on Very-Well-Poised ₈∅₇ Series
dc.contributor.author | Stokman, J.V. | |
dc.date.accessioned | 2019-02-18T12:38:03Z | |
dc.date.available | 2019-02-18T12:38:03Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ₈∅₇ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker-Akhiezer functions. | uk_UA |
dc.description.sponsorship | I thank Tom Koornwinder for drawing my attention to the quadratic transformation formula for continuous q-Jacobi polynomials. I thank Mizan Rahman for pointing out to me how the quadratic transformations (5.2) and (5.3) for very-well-poised ₈∅₇ series are related to the known quadratic transformation formula [6, (3.5.10)] (see Reamark 5.3(i)). | uk_UA |
dc.identifier.citation | Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 33D15; 33D45 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2012.039 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/148446 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Some Remarks on Very-Well-Poised ₈∅₇ Series | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 039-Stokman.pdf
- Розмір:
- 450.96 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: