On Darboux's Approach to R-Separability of Variables

dc.contributor.authorSym, A.
dc.contributor.authorSzereszewski, A.
dc.date.accessioned2019-02-14T18:01:48Z
dc.date.available2019-02-14T18:01:48Z
dc.date.issued2011
dc.description.abstractWe discuss the problem of R-separability (separability of variables with a factor R) in the stationary Schrödinger equation on n-dimensional Riemann space. We follow the approach of Gaston Darboux who was the first to give the first general treatment of R-separability in PDE (Laplace equation on E³). According to Darboux R-separability amounts to two conditions: metric is isothermic (all its parametric surfaces are isothermic in the sense of both classical differential geometry and modern theory of solitons) and moreover when an isothermic metric is given their Lamé coefficients satisfy a single constraint which is either functional (when R is harmonic) or differential (in the opposite case). These two conditions are generalized to n-dimensional case. In particular we define n-dimensional isothermic metrics and distinguish an important subclass of isothermic metrics which we call binary metrics. The approach is illustrated by two standard examples and two less standard examples. In all cases the approach offers alternative and much simplified proofs or derivations. We formulate a systematic procedure to isolate R-separable metrics. This procedure is implemented in the case of 3-dimensional Laplace equation. Finally we discuss the class of Dupin-cyclidic metrics which are non-regularly R-separable in the Laplace equation on E³.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. Our thanks are due to reviewers for critical remarks and notably to the editors for valuable comments which inspired us to deeply revise our preprint.uk_UA
dc.identifier.citationOn Darboux's Approach to R-Separability of Variables / A. Sym, A. Szereszewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 34 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 35J05; 35J10; 35J15; 35Q05; 35R01; 53A05
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2011.095
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147413
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOn Darboux's Approach to R-Separability of Variablesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
095-Sym.pdf
Розмір:
451.09 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: