Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI

dc.contributor.authorFilipuk, G.
dc.contributor.authorVan Assche, W.
dc.date.accessioned2025-11-26T11:23:17Z
dc.date.issued2018
dc.description.abstractWe investigate the recurrence coefficients of discrete orthogonal polynomials on the non-negative integers with hypergeometric weights and show that they satisfy a system of non-linear difference equations and a non-linear second-order differential equation in one of the parameters of the weights. The non-linear difference equations form a pair of discrete Painlevé equations, and the differential equation is the σ-form of the sixth Painlevé equation. We briefly investigate the asymptotic behavior of the recurrence coefficients as n→∞ using the discrete Painlevé equations.
dc.description.sponsorshipGF acknowledges the support of the National Science Center (Poland) via grant OPUS 2017/25/B/BST1/00931. Support of the Alexander von Humboldt Foundation is also gratefully acknowledged. WVA is supported by FWO research project G.0864.16N and EOS project PRIMA 30889451. The authors thank the anonymous referees for their comments, which improved the original version.
dc.identifier.citationDiscrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.088
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33C45; 33E17; 34M55; 42C05
dc.identifier.otherarXiv: 1804.02856
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209762
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleDiscrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
088-Filipuk.pdf
Розмір:
419.71 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: